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The activation energy for a heterogeneous reaction involving a solid may be obtained from
a plot of

∫ α
0 ln(dα/dt) dα against

∫ α
0 (1/T ) dα, where α represents the fractional conversion of

the solid reactant, and T (t) is the (time-dependent) reactant temperature. This new
approach to the analysis of dynamic thermoanalytical kinetic data has distinct advantages
over existing methods, as it needs to make no assumption about the kinetic model,
involves no approximation to the temperature integral, and is easy to implement on the
computer. C© 1999 Kluwer Academic Publishers

1. Introduction
The development of non-isothermal kinetics in thermal
analysis over the last 30–40 years, may, according to
Flynn [1] as chairman of the Kinetics Committee un-
der the ICTA Council, be summarised if necessary by
a single statement. Namely, that it was an era in which
hundreds of cute and clever mathematical manipula-
tions were performed on the equation expressing the
rate as a kinetic function multiplied by an Arrhenius
term, and on the so-called temperature integral. This
integral has no analytical solution but has been approx-
imated by one algebraic expression or another, many
of which are however gross or even inaccurate, and,
used indiscrimately, serve only to create confusion and
disinformation [1]. The equation in hand is

dα

dt
= A f (α)exp

(
− E

RT

)
, (1)

whereα represents fractional conversion (increasing
from 0 to 1) in the solid reactant during the course of
the reaction;A, Arrhenius pre-exponetial factor;T , re-
actant temperature;f (α), a so-called kinetic function
that depends on the reaction mechanism;E, activation
energy for the reaction andR, the gas constant. This
rate equation holds for heterogeneous reactions involv-
ing a solid under both isothermal and non-isothermal
conditions. However, its application brings complica-
tions only in the non-isothermal situation [2, 3], which
is therefore our sole concern in this paper.

In the laboratory, most if not all non-isothermal
experiments in thermal analysis are “dynamic,” i.e.,
carried out at some constant heating rateβ =dT/dt.
In principle, the reaction kinetics may be determined
(i.e., its parametersE and A measured) either from a
single experimentalα-t curve or from several curves
recorded at variousβ. In the former case, the single set

of thermoanalytical data must first be fitted by an as-
sumed kinetic function [4]. Without a priori knowledge
of f (α), a “trial-and-error” procedure may be adopted
[5], but its accuracy is doubtful as the “best fitting”
kinetic model seldom turns out to be unique [6]. In
the latter case of multiple heating rates, isoconversion
methods enjoy popular use. These methods consider
points of the sameα on different heating curves, so that
f (α) has identical (though unknown) magnitude and
can therefore be “cancelled out.”

In this paper, the applicability of several well-known
isoconversional methods is discussed first. Next we
present a new approach, which is then tested on the
analyses of two examples of thermal decomposition.
Its superiority is demonstrated experimentally.

2. Theory
It is straight forward to modify Equation 1 to read:

ln

(
dα

dt

)
= ln[ A f (α)] − E

RT
. (2)

A plot of ln(dα/dt) against 1/T for isoconversion
points on various heating curves (of differentβ) yields
thereforeE, since its slope should be−E/R. This
method, first proposed by Friedman [7], is the most gen-
eral among all methods using derivatives but, like all
such methods, suffer from inherent errors arising from
dα/dt values [2]. These derivatives may be measured
directly off DSC or DTA thermograms, which are more
noisy and for which the baselines are less well defined
than in the case of TGA, or derived from TGA thermo-
grams, via numerical differentiation, which operation
however decreases the signal-to-noise ratio. The noise
is particularly serious in the beginning and even more so
towards the end of the reaction, whenα changes slowly.
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It has been claimed [8] that approximating TGA curves
by power series giveα derivatives of higher quality, but
in fact curve fitting by polynomials or better still by
cubic splines [9], however “cleverly” done, cannot re-
duce the random errors generated by the mathematical
operation of differentiation.

Alternatively, on the assumption that the reaction un-
der study involves no processes that are slow on the ex-
perimental time scale [2], Equation 1 may be rendered
into the integral form:∫ α

0

dα

f (α)
=
∫ T

T0

Aexp

(
− E

RT

)
dt, (3)

whereT0 denotes the initial temperture at which the
DSC or TGA measurement has started. With the further
assumptions thatA is not a function ofT and dα/dt = 0
at T ≤ T0, as are usually the case, and thatβ is truly
constant throughout the measurement, then, in the no-
tationx≡ E/RT, Equation 3 may be simplified to

β

A

∫ α

0

dα

f (α)
= −E

R

∫ x

∞
x−2 exp(−x) dx, (4)

or

β
R

AE

∫ α

0

dα

f (α)
=
∫ ∞

x
x−2 exp(−x) dx. (5)

The right-hand side of the last equation is the famous
“temperature integral”p(x). Sincep(x) has no analyt-
ical solution in closed form, lots of fun have been had
in devising its algebraic expressions.

The Ozawa-Flynn-Wall or “OFW” method [10–13]
adopts the approximation

log p(x) ∼= −2.315− 0.4567x (20< x<60), (6)

so that, numerically,

lnβ ∼= −1.052
E

R

(
1

T

)
+ FOFW(α), (7)

where log and ln are logarithms to base 10
and base e respectively, andFOFW(α)∼=−5.333−
ln{(R/AE)

∫ α
0 [1/ f (α)] dα} is the intercept in the plot

of ln β vs. 1/T .
It is also true that

p(x) ∼= exp(−x)/x2 (20< x < 50), (8)

so that, again numerically,

ln

(
β

T2

)
∼= −E

R

(
1

T

)
+ FKAS(α). (9)

where FKAS(α)∼=−ln{(E/R A)
∫ α

0 [1/ f (α)] dα}. This
(KAS) method has been suggested by Akahira and
Sunose [14] and Kissinger [15].

Obviously all methods like these suffer always from
systematic errors in the algebraic expressions forp(x).

Such errors may even turn into grave inaccuracy, when
researchers (or computer software) use the methods in-
discrimately, without putting back the derived magni-
tude ofE into x to confirm thatx falls within its range
of validity. Hence, in a previous paper [16], we have
proposed a new approach that is free of unnecessary
sources of random and systematic errors. Integrating
both sides of Equation 2 with respect toα, we get∫ α

0
ln

(
dα

dt

)
dα = −E

R

∫ α

0

dα

T
+ G(α), (10)

where G(α)≡αlnA+ ∫ α0 ln f (α) dα has the same
value for isoconversion points, irrespective ofβ. A plot
of
∫ α

0 ln(dα/dt) dα against
∫ α

0 (1/T) dα at a givenα for
a set ofβ ’s, will therefore have the slope−E/R. Note
the elimination of any approximation forp(x) or for
any other factor. Also, that although derivatives ofα
are used, taking their logarithms followed by integra-
tion reduces noises twice. Note in addition that every
term in Equation 10 is dimensionless, so that the rela-
tion holds mathematically, not just numerically. Lastly,
that the constancy of eachβ no longer need to be as-
sumed. Indeed, the real experimental values ofT as a
time series can be used as input data in the integration
of 1/T with respect toα(T), thus eliminating another
source of errors (instrumental errors in this instance).

3. Applications
To test our approach against some well-known isocon-
versional methods, we apply them to the thermal anal-
yses of the following reactions:

SrCO3(s) −→ SrO(s)+ CO2(g),

and

2CuO(s)−→ Cu2O(s)+ 1
2O2(g).

Experiments were conducted in a Setaram TGA 92-16
thermal analyser, at the nominal (programme) heating
rates of 2.5, 5.0, 7.5 and 10 K/min. This simultane-
ous TGA and heat-flux DSC instrument had been cal-
ibrated carefully in temperature and in weight scale
[16]. Alumina crucibles of 100 microliters in volume
made by Setaram served as sample pans and calcined
α-Al2O3 (4–9’s) from Aldrich, as the reference. Argon
dried by molecular sieves (Type 5A, Aldrich) worked as
the purge gas, and its flow rate was maintained constant
at 1.00± 0.05 ml/s by a mass flow controller (D07-11,
Beijing Jianzhong Mfg.). Measured sample tempera-
tures (not programme temperatures) and gravimetric
readings were downloaded to a 386 IBM-compatible
PC via an RS232 interface. These files were first deci-
phered into ASCII format and then processed by a pro-
gram, written in Borland C++, which included a sub-
routine that performed numerical differentiation and
integration in double precision after fitting the calcu-
latedα(T) data with cubic splines. Results in graphical
form, when needed, were generated by calls to Origin
for Windows version 4.10.
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Figure 1 TGA curves, recorded atβ = 2.5, 5.0, 7.5, 10 K/min, for the
decomposition of SrCO3.

Figure 2 Plots of ln(dα/dt) and its integral, calculated from the TGA
data forβ = 7.5 K/min in Fig. 1; I{ } denotes integration from 0 toα
with respect to dα.

Figure 3 Plots of 1/T and its integral againstα, for β = 7.5 K/min.

3.1. Strontium carbonate
Strontium carbonate, from Aldrich, was 99.995% pure
and 12±2 µm in particle size. Its TGA data for four
heating rates are given in Fig. 1. Figs 2 and 3 show
the evaluations of the two variable terms in Equation
10, respectively, for a heating rate. As expected, the
calculated values of

∫ α
0 ln(dα/dt) dα are less noisy than

those for ln(dα/dt), themselves already less noisy
than dα/dt values (omitted in the figure for clarity).
The calculations are repeated for other heating rates.∫ α

0 ln(dα/dt) dα is plotted against
∫ α

0 (1/T) dα then:
Fig. 4. The least-squares fit to each set of four points

Figure 4
∫ α

0 [ln(dα/dt)] dα vs.
∫ α

0 (1/T) dα, a straight line is fitted to
each set of four points corresponding to differentβ but the sameα, the
sets forα = 0.40, 0.50 and 0.60 serving as examples.

Figure 5 Activation energies of SrCO3 decomposition as determined by
different methods.

Figure 6 Correlation coefficients for SrCO3 activation energy plots in
different methods.

(corresponding to four differentβ) with the sameα
yields the activation energyE, equal to its slope mul-
tiplied by−R. In this way, the values ofE at various
α, from 0.05 to 0.95 in step of 0.05 can be determined
(Fig. 5).

Fig. 5 also presents the activation energies that we
derived by means of older isoconversion methods. The
correlation coefficients among the sets of isoconversion
points used in each method, old or new, are depicted
in Fig. 6. Friedman’s method achieves the worst core-
lations; our approach, the best. Both OFW and KAS
methods give higherE than ours.
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Figure 7 E for CuO from Beijing Chemical Works.

Figure 8 E for CuO from Fluka.

3.2. Cupric oxide
Two batches of reagents were examined, one supplied
by Beijing Chemical Works and the other bought from
Fluka, both of the stated purity 99.8%. From the results
(Figs 7 and 8) we see that outcomes are independent
of samples origins, and that the OFW and the KAS
methods consistently lead to higher activation energies.
Again, our approach offers the best correlations in the
isoconversion plots (not shown).

4. Conclusions
The consistent over-estimation ofE in the OFW and the
KAS methods is a natural consequence of the truncation
of higher-order terms in Equations 6 and 8. All isocon-
version methods that invoke algebraic expansions of the
temperature integralp(x) will suffer from similar sys-
tematic errors. On the other hand, methods that make
simple use ofα derivatives, like Friedman’s, will suffer
from excessive random errors.

Our approach (Equation 10) avoids these pitfalls.
Moreover, it is valid for all range ofx ∝ E. Its superi-
ority has indeed been confirmed by experiments on the
thermal decompositions of a carbonate and an oxide.
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